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Abstract: Maxwell’s equations require a gauge condition for specifi c solutions. This incomplete-
ness motivates use of a dynamical quantity, ξ= –∇•A – εµ ∂φ/∂t. Here, A and φ are the vector and 
scalar potentials, with permeability and permittivity, ε and µ, respectively. The results are: 

• relativistic covariance
• classical wave solutions
• elimination of inconsistency between the media-interface matching for φ and for Gauss’ law
• independent determination of A and φ
• prediction of two new waves, one being a charge-fl uctuation-driven scalar wave, having 

energy but not momentum
• a second longitudinal-electric wave with energy and momentum
• experimental suggestions.
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4 L.M. Hively and G.C. Giakos

1 Introduction

Classical electromagnetism is central to all of physics, relating 
electric (E) and magnetic (B) fi elds with the dynamics of 
electrically charged matter. An E fi eld is created by charges. 
The motion of charges creates an electrical current, which 
then infl uences the B and E fi elds.

Fundamental issues motivate a more complete, classical 
electro-dynamic theory. Maxwell’s model is a coupled set 
of Partial-Differential Equations (PDEs) at a mathematical 
point (Maxwell, 1865). Equivalently, the forces depend 
only on the local fi eld values. However, real experiments 
are performed over a fi nite time and spatial region, 
without any infi nites. Divergences occur theoretically at 
a space-time point. Integral forms over a fi nite space-time 
region are a present alternative for Maxwell’s equations 
(Jackson, 1962; Lorrain and Corson, 1970), but do not 
address another incompleteness, as discussed next.

A second motivation is that Maxwell’s equations have 
an infi nitude of arbitrary vector-fi eld solutions. Solutions 
require a gauge assumption, such as ∇ • A + αεµ ∂φ/∂t = 0. 
One extreme is the Lorenz gauge (α = 1), implying that 
the effect of a charge source propagates at light speed, c. 
The Coulomb gauge (α = 0) yields electrostatics with φ 
propagation at infi nite speed. Values of 0 < α < 1 are called 
the velocity gauge, and can be interpreted as φ propagation 
at a speed, v > c (Jackson, 2002). Consequently, the gauge 
condition is related to (non)locality by its scalar-potential 
propagation speed.

An alternative assumes a dynamical variation in 
ξ = – ∇ • A – εµ ∂φ/∂t. Early work by Ohmura (1956) gave 
a time derivative of ξ in Gauss’ law and a gradient of ξ 
in Ampere’s law. Aharonov and Bohm (1963) added a term, 
ξ2/2λ, to the classical electromagnetic Lagrangian for particle 
motion, where λ is a suitably adjusted constant. For λ > 0, the 
theory predicts non-local sources for the current density, 
J → J – ∇ ξ/µ and the charge density, ρ → ρ + ε ∂ξ/∂t. This 
theory also predicts non-conservation of charge, which is 
discussed below in more detail. As λ → 0, the lowest excitation 
state of ξ approaches a delta function of ∇ • A + εµ ∂φ/∂t, 
allowing recovery of charge conservation and classical 
electrodynamics. For λ = 1, the Aharonov-Bohm theory is 
identical to Ohmura (1956) and van Vlaenderen and Waser 
(2001). A term of the same form as ξ2/2λ can be added to 
the gauge-invariant Lagrangian density (Jackson and Okun, 
2001); examples are the Feynman gauge (λ = 1) and the 
Landau gauge (λ = 0).

A third issue is that A and φ are uniquely and independently 
determined by the classical retarded Green’s operators on 
J and ρ (Griffi ths, 2007). However, the Lorenz gauge under 
classical electrodynamics implies that A and φ are not 
independent quantities, but rather are related by (Ribaric and 
Sustersic, 1990):

2( , ) ( , ) d .= − ∇ •∫
t

s
r t r s c A tf f  (1)

The use of Ockham’s Razor on this issue (Ribaric and 
Sustersic, 1990) favours the simpler hypothesis of A and φ as 

independent, which is explicitly allowed by this new theory. 
A test of this question involves simultaneous measurement 
of A and φ within an arbitrary gauge (A → A + ∇Λ and 
φ → φ – ∂Λ/∂t). This theory also resolves a difference in 
matching conditions at the interface of two media, as 
obtained from the electric potential (φ) and from Gauss’ law. 
This work does not address incompleteness for dielectric 
and magnetic materials, requiring the determination of 
ε and µ.

These issues suggest the need for a more complete 
electrodynamic theory, as discussed herein. Section 2 
summarises relevant parts of classical electrodynamics. 
Section 3 elucidates the new theory with ξ as a 
dynamical quantity (Ohmura, 1956; Aharonov and 
Bohm, 1963; van Vlaenderen and Waser, 2001). 
Section 4 obtains a covariant wave equation and new 
forms for momentum and energy. Section 5 describes 
explicit wave solutions from the new theory. Section 6 
discusses the new theory vs. present experimental tests of 
the Maxwell-Proca formulation for massive photons and 
measurement of longitudinal waves in free space (Giakos 
and Ishii, 1993). Section 7 provides the conclusions.

2 Classical electrodynamics

Electrodynamics can be modelled by Maxwell’s equations 
(Jackson, 1962). Here, bold italic denotes a vector function 
of time and space. The electric current density and the 
electric charge density are denoted by J and ρ, respectively. 
The electric permittivity, ε, and magnetic permeability, µ, 
are assumed to be steady-state, homogeneous, isotropic, and 
not necessarily equal to their vacuum values. The B and E 
fi elds can be written in MKS units as (Lorrain and Corson, 
1970):

B = ∇ × A; (2)

E = –∂A/∂t – ∇φ. (3)

This paper focuses on wave-like solutions for the fi elds 
and potentials; other solutions (i.e., only of time, or only of 
space) are not discussed. The wave equations for B and E 
are (Lorrain and Corson, 1970):

εµ
 
∂2B/∂t2 – ∇2B = µ∇ × J; (4)

εµ
 
∂2E/∂t2 – ∇2E = –µ ∂J/∂t – ∇ρ/ε. (5)

The classical wave equations for φ and A have the form 
(Lorrain and Corson, 1970):

εµ ∂2φ/∂t2 – ∇2φ = ρ/ε; (6)

εµ ∂2A/∂t2 – ∇2A = µ J. (7)

The form, B = ∇ × A, in equation (2) allows an arbitrary 
gauge function, Λ, via the vector identity, ∇ × ∇Λ = 0 
(Danese, 1965), implying that the vector potential is 
arbitrary under a transformation of A → A + ∇Λ, but B 
is unchanged (gauge invariant). E in equation (3) must 
also be invariant under this transformation, implying 
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Toward a more complete electrodynamic theory 5

that φ → φ – ∂Λ/∂t. This infi nitude of functional forms 
can be expressed as a choice of gauge transformation 
(Jackson and Okun, 2001; Jackson, 2002). One choice is 
the Lorenz gauge, ξ = 0, with the auxiliary condition, 
εµ ∂2Λ/∂t2 – ∇2Λ = 0:

ξ = –∇ • A – εµ ∂φ/∂t. (8)

The use of ξ = 0 eliminates ∂ξ/∂t in the derivation of 
equation (6), and –∇ξ in the derivation of equation (7).

3 The new theory

Aharonov and Bohm (1963) added a term, ξ2/2λ, to 
the classical electromagnetic Lagrangian for particle 
motion. Here, λ is a suitably adjusted constant. E and ξ 
are then canonically conjugated to A and φ, respectively. 
As λ → 0, they verify that the lowest excitation state of 
ξ approaches a delta function of ξ. As λ → 0, they also 
recover charge conservation and the classical Maxwell’s 
equations. They show that ξ as a dynamical quantity 
is indirectly equivalent to altering the assumptions on 
localisability of the charge-current interaction, resulting in 
charge non-conservation for λ > 0. Distributed (non-local) 
sources arise for J → J – ∇ξ/µ and for ρ → ρ + ε∂ξ/∂t, also 
consistent with the present work. The present work uses the 
resultant equations of motion for λ = 1, which are identical 
to the work of Ohmura (1956), and van Vlaenderen 
and Waser (2001). Specifi cally, the new formulation 
adds one term in each inhomogeneous equation for 
B and E with ξ ≠ 0, not unlike Maxwell’s addition (Maxwell, 
1865) of displacement current:

∇ × B – εµ ∂E/∂t = µ(J – ∇ξ/µ); (9)

∇ • E = (ρ + ε∂ξ/∂t) /ε. (10)

The homogeneous equations (∇ •B = 0 and ∇ × E + ∂B/∂t = 0) 
are unchanged. The curl of equation (9) has the term, 
∇ × ∇ξ = 0 (Danese, 1965), resulting in the classical B-wave 
equation, equation (4). Moreover, ξ does not occur in the wave 
equation for E, equation (5), because ∇∂ξ/∂t – ∂∇ξ/∂t = 0 from 
the gradient of equation (10). The wave equations for φ and 
A are also unchanged via cancellation of terms, ∂ξ/∂t and ∇ξ, 
in equations (6) and (7), respectively. Consequently, the new 
theory preserves the classical wave equations for A, B, E, and 
φ, as well as the classical expressions for the fi elds in terms of 
the potentials, equations (2) and (3). While the new theory is 
trivially consistent with the classical forms for ξ = 0, the key 
point of the new theory is ascribing dynamical variability to 
ξ ≠ 0 (i.e., a scalar wave), rather than to focus on a particular 
choice of gauge. This approach is a signifi cant revision of 
classical electrodynamics.

Matching conditions at the interface between two media 
are required to solve Maxwell’s equations. This condition 
under classical electrodynamics for the normal component of 
E is (Lorrain and Corson, 1970):

ε2En2 – ε1En1  = ε2(–∂A/∂t – ∇φ)n2 – ε1(–∂A/∂t – ∇φ)n1 = ρA. (11)

The subscript, ‘n’ denotes a component that is normal to the 
interface. The subscripts 1 and 2 indicate the corresponding 
value in media 1 or 2, respectively. The surface-charge density 
is ρA. The matching condition in equation (11) is unchanged 
by the Λ-gauge transformation, because E is unchanged.

The matching condition for equation (6) can be obtained 
by noting that ∇2φ = ∇ • (∇φ):

–ε2(∇φ)n2 + ε1(∇φ)n1 = ρA. (12)

The difference between equations (11) and (12) is 
ε1(∂A/∂t)n1 – ε2(∂A/∂t)n2 = 0. This difference is not due to 
equation (12) being written in terms of the scalar potential, 
since equation (11) is Λ-gauge invariant in terms of the 
potential functions. The key assumption in the derivation 
of equation (12) is the choice of ξ = 0 for obtaining equation 
(6). Other gauges (e.g., ∇ • A = 0) are equivalent to ξ = 0 with 
different physical interpretations (Jackson and Okun, 2001; 
Jackson, 2002), so the issue is not the choice of gauge. 

The matching condition for equation (6) under the new 
theory is equation (12) (The other matching conditions 
are unchanged). Equation (12) also can be obtained by 
substitution for E from equation (3) and ξ ≠ 0 from equation (8) 
into equation (10). Consequently, the difference in matching 
condition is eliminated by this new theory. Moreover, 
equation (12) is a testable prediction of the theory, namely, 
that surface charge at an interface produces a discontinuity in 
the gradient of the scalar potential, rather than a discontinuity 
in the normal component of E. An experiment with non-zero 
∂A/∂t should be able to test equation (11) vs. equation (12).

4 Waves, charge, momentum, and energy

A wave equation for ξ arises (van Vlaenderen and Waser, 
2001; Arbab and Satti, 2009) from the divergence of equation 
(9), plus the time-derivative of equation (10):

εµ ∂2ξ/∂t2 – ∇2ξ = –µ[∂ρ/∂t + ∇ • J]. (13)

Charge conservation corresponds to a zero right-hand side 
(RHS) for equation (13), which is an instantaneous equation. 
However, all real experiments are performed over a fi nite 
time, ∆T, corresponding to a time average. A long-time 
average gives ∂ρ/∂t + ∇•J = 0 on the RHS of equation (13), 
in accord with long-standing experimental evidence (Okun, 
1989; Belli et al., 1999) for charge conservation, implying:

〈εµ ∂2ξ/∂t2 – ∇2ξ〉 = 0, ∆T >> ∆t. (14)

The zero RHS of equation (14) implies lossless ξ-wave 
propagation in the absence of a source or sink over long time 
scales, for a time average, 〈·〉. Nevertheless, long-time-scale 
charge conservation does not preclude charge non-conservation 
over short time scales, and is a signifi cant departure from the 
classical theory. In this context, ‘short’ means that ∆T ≤ ∆t, 
where ∆t arises from the Heisenberg uncertainty relation, 
∆E ∆t ≥ ħ/2; ∆E is the charged-quantum-fl uctuation energy; and 
h is Planck’s constant. Equation (13) can then be interpreted as 
charge non-conservation driving the ξ-wave, and vice versa. 
(This interpretation is not unlike energy fl uctuations driving 
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6 L.M. Hively and G.C. Giakos

This condition corresponds to a discontinuity in ∇ξ from 
charge fl uctuations at an interface.

The resultant form for momentum balance under the new 
theory is (van Vlaenderen and Waser, 2001): 

εµ (∂P/∂t) + (ρ + ε∂ξ/∂t)E + (J – ∇ξ/µ) × B = ∇ • T. (18)

The form for energy conservation under the new theory 
becomes (van Vlaenderen and Waser, 2001):

∂u/∂t + ∇ • P + (J – ∇ξ/µ) • E = 0, with u = ½ (ε E2 + B2/µ). (19)

The Poynting vector is P = E × B/µ; the Maxwell stress 
tensor is T = ε[EE – ½IE2] + [BB – ½IB2]/µ, from the classical 
defi nitions (Jackson, 1962). An alternative form is (van 
Vlaenderen and Waser, 2001):

∂v/∂t + ∇ • Q + J • E + ρξ/εµ = 0, with 
  v = ½ (ε E2 + B2/µ + ξ2/µ); Q = E × B/µ – ξE/µ. (19′)

The new form for the Lorentz force from equation (18) then 
is (van Vlaenderen and Waser, 2001):

F = (ρ + ε∂ξ/∂t)E + (J – ∇ξ/µ) × B. (20)

Equations (18)–(20) have the current density, J, replaced 
by (J – ∇ξ/µ); ρ is replaced by the term, (ρ + ε∂ξ/∂t). 
These replacements arise from equations (9) and (10), 
which have the same replacements. Validation of equation 
(20) requires measurement of ε(∂ξ/∂t) E and (∇ξ/µ) × B. 
The third wave solution (below) shows that ξ can occur 
together with a longitudinal E-wave. Consequently, 
this theory predicts that long-time-averaged products, 
<(∂ξ/∂t)E> and <∇ξ × B>, in the generalised force of 
equation (20) will be experimentally observable, due to 
correlations between the ξ- and electromagnetic waves, 
even if the short-time variations in ξ, B, and E are too fast 
to observe directly.

5 New wave solutions

This section addresses explicit wave solutions for B = E = 0. 
The resultant forms are: 

–∂ξ/∂t = ρ/ε, for E = 0 in equation (10); (21)

∇ξ = µJ, for B = E = 0 in equation (9); (22)

∇ × J  = 0, for B = 0 in equation (4); (23)

∂J/∂t + ∇ρ/µε = 0, for E = 0 in equation (5). (24)

Equations (21)–(24) have no wave-like solutions for 
ρ = constant or J = constant. Rather, these conditions are for 
electrostatics and magnetostatics, respectively. Equations 
(21) and (22) are equivalent to equations (23) and (24). Note 
that equation (22), ∇ξ = µJ, implies that the line integral, 
∫J • dl = ∫∇ξ • dl/µ, is independent of the path, and thus is 
zero around a closed path, corresponding to no circulating 
currents for creation of the ξ-wave. Rather, ξ arises from 
charge fl uctuations in equation (13). The condition, B = 0, 
implies that ∇ × A = 0 from equation (2), or A = ∇χ for an 
arbitrary scalar function, χ. The resultant equation is: 

⁫4χ = µ[∂ρ/∂t + ∇ • J],  A = ∇χ and φ = –∂χ/∂t. (25)

mass fl uctuations in quantum electrodynamics, and vice versa.) 
Direct experimental confi rmation of such quantum charge 
fl uctuations will require observations, consistent with the 
Heisenberg uncertainty relation. For example, a bare electron 
has ∆E = mec2 = 0.51 MeV, corresponding to ∆t ~ 6 × 10–22 
seconds, which is too fast for direct observations at present. 
Still, this theory gives testable predictions for inference of 
ξ-waves over short time scales, as discussed below.

Regarding charge conservation, Okun (1989) reviewed 
the status of experimental tests (e.g., electron decay into two 
γ-rays, each at mec2/2). A lower bound on the lifetime of an 
electron is τe > 1024 years, for long-time charge conservation; 
see Belli et al. (1999) and citations therein. Okun (1989) also 
discussed longitudinal photons (E-longitudinal waves, as 
discussed below), which would be emitted at the point in the 
Feynman diagram where charge conservation is violated (see 
also Heitler, 1984). Consequently, the longitudinal electric 
wave (LEW) is directly related to charge conservation, which 
is in turn tied to the ξ-wave under this theory. As discussed 
above, charge conservation over long-time scales is not 
inconsistent with short-time charge non-conservation under 
the Heisenberg uncertainty principle, which also allows non-
conservation of energy and momentum. 

Equation (13) can be derived directly, using the 4-vector 
form of equations (6) and (7) (Jackson, 1962): 

⁫2A = µJ. (15)

Here, the 4-vector current density is J = (J, icρ). The 4-vector 
potential is A = (A, iφ/c), using i = (–1)1/2, ⁫ = (∇, ∂/∂ict), and 
c = (εµ)–1/2 in the local medium (not necessarily vacuum). 
As discussed in Section 3, equation (15) arises from this more 
complete theory without assuming a gauge condition. The 
4-divergence of equation (15) is ⁫ •(⁫2A) = µ⁫ •J, in which 
the time derivatives commute with one another and with the 
spatial derivatives. Also, the Laplacian commutes with the 
divergence of A, ∇•(∇2A) = ∇2(∇•A), because ∇•(∇ × B) = 0 
and B = ∇ × A. Thus, the D’Alembertian commutes with the 
4-divergence to yield:

⁫2(–⁫ • A) = –µ⁫ • J. (16)

The RHS of equation (16) can be written (Jackson, 1962) as the 
RHS of equation (13), –µ⁫ • J = –µ(∇ • J + ∂ρ/∂t). Moreover, 
–ξ is the divergence of the 4-vector potential (Jackson, 
1962). Consequently, equation (16) is an alternative form for 
equation (13). Under classical electrodynamics, the right- and 
left-hand sides of equation (16) are independently zero. 
Equation (13) is equivalent to equation (16) under the new 
theory, as a 4-vector covariant form that is consistent with 
relativistic invariance (Jackson, 1962). This derivation 
elucidates the Aharonov-Bohm (1963) statement about 
classical charge conservation, corresponding to a delta 
function of ∇ •A + εµ ∂φ/∂t (ξ = 0) for the wave function for 
the lowest excitation state. This derivation also provides 
insight into charge non-conservation (⁫ • J ≠ 0), arising 
from the dynamical variability in ξ = –⁫ • A under this more 
complete theory. The ξ-wave boundary condition is: 

(∇ξ)n2/µ2 – (∇ξ)n1/µ1  = [∂ρA/∂t + ∇ • JA]. (17)
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Toward a more complete electrodynamic theory 7

and Ampere’s law are based on falsifi ability tests for 
massive photons under the Maxwell-Proca theory, which 
has an additional term on the RHS of Gauss’ law (–µ

γ
2φ) 

and an additional term on the RHS of Ampere’s law 
(–µ

γ
2A). The photon mass is µ

γ
, with present experimental 

limits at a level of µ
γ
 < 10–51 g; see Luo et al. (2003) and 

Goldhaber and Nieto (2010). Such tests cannot be used 
to test the new theory, which is incompatible with the 
Maxwell-Proca formulation. As discussed above, the 
long-time lower bound on the lifetime for single electron 
decay, τe > 1024 years (Belli et al., 1999) does not preclude 
short-time non-conservation of charge. No short-time tests 
of charge conservation are known.

Classical theory predicts no LEW in free space. One 
classical counter-example arises from a stellar explosion, 
which ejects concentric, spherical, radially expanding shells 
of fast electrons (outer shell) and slower-moving positive-
ions (inner shell). These charged shells form a spherical 
capacitor with a radial E-fi eld that is parallel to the shell’s 
outward radial motion. Spherical symmetry implies that the 
E-fi eld varies as 1/R2, with R = radial distance from the centre. 
If the ejecta are not spherically symmetric (e.g., dipole shells 
from the Crab supernova), an E-fi eld component still occurs 
in the outgoing direction. The temporal and radial variations 
in this propagating E-fi eld form a LEW. A second example is 
a nuclear explosion in vacuum that produces an LEW for the 
same reason (Monstein and Wesley, 2002). A third example 
is a fl at-plate capacitor, which has a longitudinal E-fi eld that 
changes in time and space between the conductive plates 
during (dis)charging, even with edge effects; this example 
is also valid for other geometries. The temporal variations 
in charge separation drive the boundary conditions in each 
of these examples, which can occur (in principle) at infi nity, 
making the propagation medium indistinguishable from free 
space. (Other classical situations also yield longitudinal 
electric fi elds, such as wave propagation at the interface 
between two dielectric materials, and TE/TM modes in 
waveguides.) Experimental validation is, therefore, vital.

Giakos and Ishii (1993) measured longitudinal waves in 
air over many wavelengths from the open end of a rectangular 
waveguide at 12.25 GHz (free-space wavelength of 2.45 cm), 
as shown in Figure 1. The entire experiment was elevated 
82.5 cm above a wooden tabletop at two different indoor sites 
to minimise any ground waves and refl ections. The E-fi eld 
sensor was a 3.5 cm long dipolar antenna of 0.0123 cm thick 
copper wire, oriented along the Z axis. The non-decaying, 
free-space, longitudinal electromagnetic wave has 
interference oscillations, as shown in Figure 2. On the other 
hand, the B-wave sensor was a 3.5 cm, square loop antenna 
of 0.0123 cm thick copper wire, oriented with the axis of 
the loop along the Z axis. A non-decaying longitudinal 
B-wave was observed, as shown in Figure 3. This result 
follows from classical electrodynamics in conversion of the 
wave-guide modes to low-loss, free-space propagation; see 
Giakos and Ishii (1993) and references therein. The observed 
longitudinal components do not decay according to the 
1/R2 or 1/R3 with distance, but at a much slower rate. The 
interference oscillations probably arose from the coupling 

Here, the D’Alembertian operator is: ⁫2 = ∇2 – ∂2/∂c2t2, where 
c = (εµ)–1/2 in the local medium (not necessarily vacuum), as 
before. Charged fl uctuations drive this fourth-order equation. 
The momentum, Q, in equation (19′) yields zero for E = B = 0, 
along with an energy density of the form, v (E = B = 0) = ξ2/2µ. 
Thus, ξ-waves have energy, but not momentum. The explicit 
prediction of wave-like phenomena (ξ-waves) with energy, 
but not momentum, is unprecedented, but is not unlike 
charged, quantum particle-antiparticle fl uctuations having 
energy, but no net momentum.

A second special case for E = 0 gives A = ∇χ and φ = –∂χ/∂t. 
However, substitution of A = ∇χ into equation (2) yields 
B = 0. Consequently, E = 0 implies B = 0, which is the same as 
the previous case. Thus, magnetic wave-like solutions cannot 
occur for E = 0 with the ξ-wave.

A third case for B = 0 also gives A = ∇χ. Equation (4) 
simplifi es to ∇ × J = 0, implying that J = ∇κ for an arbitrary 
scalar function, κ. The resultant wave equation is: 

εµ ∂2χ/∂t2 – ∇2χ = µκ, with J = ∇κ and A = ∇χ. (26)

Two scalar-wave equations are involved: equation (26) for 
χ and equation (6) for φ. The fi eld is E = –∇(φ + ∂χ/∂t), which 
has momentum, Q(B = 0) = –ξE/µ, from equation (19′), and an 
energy density is v(B = 0) = ½ (εE2 + ξ2/µ). This solution has a 
ξ-wave, together with a longitudinal E-wave, as indicated by 
the term, ξE, in equation (19′).

These new waves directly drive currents via the gradient 
of a scalar fi eld, J = ∇ξ/µ, from equation (25) for B = E = 0, 
and J = ∇κ from equation (26) for B = 0. Consequently, 
electrical-conductivity losses do not occur for longitudinal 
and ξ-waves. By contrast, transverse waves under classical 
electrodynamics drive currents in proportion to the electric 
fi eld (Jackson, 1962; Corson and Lorrain, 1970), J = σE, 
with a corresponding ‘skin depth’ and longitudinal decay 
time (ε/σ ~ 10–17 s) for typical conductive media.

The nature of the ξ-wave can be elucidated further by the 
fundamental theorem of vector calculus, which states that a 
suffi ciently smooth, decaying vector fi eld, R, has a unique 
decomposition, as the sum of curl-free and divergence-free 
components (Danese, 1965):

R = ∇u + ∇ × W. (27)

If ∇ • R = 0, then R = ∇ × W from the identity (Danese, 
1965), ∇ • ∇ × W=0. Here, W is the ‘vector’ potential for this 
‘solenoidal’ or ‘divergence-free’ case. A solenoidal current, 
∇ × J ≠ 0, drives these ‘transverse’ electromagnetic waves, 
which are well-known in classical electrodynamics (Jackson, 
1962; Griffi ths, 2007). If ∇ × R = 0, then equation (27) has the 
form, R = ∇u, via the identity (Danese, 1965), ∇ × ∇u = 0. Here, 
u is the ‘scalar’ potential for this ‘irrotational’ or ‘curl-free’ 
case with a current, J = ∇u, exciting the waves in equations 
(25) and (26). This gradient-driven current is distinct from the 
solenoidal current that drives transverse waves.

6 Discussion

How does this theory compare to tests of Gauss’ law, 
Ampere’s law, and charge conservation? Tests of Gauss’ 
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Figure 3  Predominantly longitudinal magnetic fi eld vs. parallel 
shifting distance of the detector (rectangular loop 
antenna) in air with a line-of-sight distance of 75.5 cm 
at an operating frequency of 12.25 GHz (Giakos and 
Ishii, 1993)

Classically, radial oscillations of a charged sphere produce 
no electromagnetic radiation (Panofsky and Phillips, 1969), 
because spherical symmetry implies that –∂B/∂t = ∇ × E = 0, 
i.e., no magnetic wave. Thus, the Poynting vector, E × B/µ, 
is zero, yielding no classical electromagnetic radiation. Under 
this new theory, a charged, oscillating sphere produces both 
a LEW and a scalar wave. An experiment by Ignatiev and 
Leus (2001) used a radially oscillating (120 kHz) charged 
sphere to generate a longitudinal electric wave, for which the 
propagation speed was measured at 1.12c. However, details 
are unspecifi ed (e.g., laboratory setting, antenna geometry, 
magnetic-solenoid geometry for excitation of oscillations in the 
sphere, sensor). Moreover, measurements were in the near-fi eld 
regime (wavelength = 2.5 km), for which ground refl ections and 
interferences are important. This experiment needs replication 
to validate the new theory. The reciprocity theorem guarantees 
transmission and detection by the same geometry.

A computational electromagnetic model can be modifi ed 
for the new theory, with simulations to guide the above 
experiments. For example, is a TM01 mode (with a large EZ) 
best to maximise the free-space amplitude of Ez in the LEW 
waveguide experiment? Will coupling to other TE/TM modes 
in that experiment produce the interference oscillations, as 
discussed above? An important question for the oscillating-
charged-sphere experiment is whether monopole oscillations 
will produce analogous interference oscillations when 
coupled with multi-pole oscillations in the sphere. Detailed 
(graphical) results of such analyses are beyond the scope of 
the present work.

The present work differs from ‘generalised Maxwell’s 
equations’, which include magnetic charge and currents, 

of hybrid TE/TM modes, due to the non-uniformity of the 
surface impedance of the antennas. The non-evanescent, 
longitudinal component of the electric wave in free space is not 
inconsistent with this new theory. However, this experiment 
needs to be repeated with much more care for validation of 
the new theory. For example, the cause of the interference 
oscillations cannot be verifi ed, because the excitation levels 
of the TE/TM mode(s) were not specifi ed. The antennas had 
no electromagnetic shielding to avoid interference among 
the various fi eld components. Vertical (and several different 
horizontal) waveguide orientations should produce the same 
results.

Figure 1  Schematic diagram of the experimental arrangement 
(E = electric dipole; M = magnetic dipole}, showing 
the angle of observation and orientation of the dipoles. 
Different orientations are indicated as solid lines for the 
longitudinal fi eld, and dashed lines for the transverse fi eld 
(Giakos and Ishii, 1993) (see online version for colours)

Figure 2  Predominantly longitudinal electric fi eld vs. parallel 
shifting distance of the detector (rectangular dipole 
antenna) in air with a line-of-sight distance of 75.5 cm 
at an operating frequency of 12.25 GHz (Giakos and 
Ishii, 1993)
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7 Conclusions

This paper examines the implications of a new electrodynamic 
theory (Ohmura, 1956; Aharonov and Bohm, 1963; 
van Vlaenderen and Waser, 2001), with dynamical variation 
in ξ = –∇ • A – εµ ∂φ/∂t. This new theory adds one new 
term to both Gauss’ law (∂ξ/∂t) and Ampere’s law (–∇ξ). 
The new theory preserves the classical wave equations, as 
well as the classical fi elds in terms of the potentials. The 
new theory resolves a difference in the matching condition 
for Gauss’ law and the φ-wave equation, making A and φ 
explicitly independent. The new theory predicts a non-
evanescent longitudinal-electric wave. Dynamical variability 
in ξ is interpreted as a scalar wave that is driven by charge 
fl uctuations on fast time scales; charge conservation is 
preserved for long times. (This interpretation is not unlike 
energy fl uctuations driving mass fl uctuations in quantum 
electrodynamics, and vice versa. The precedent for the 
latter is supportive of the former.) The new theory predicts 
modifi ed forms for the Lorentz force, the Poynting vector, 
and electromagnetic energy density. 

Table 1 summarises the predictions of this new theory. Some 
of these predictions are identical to classical electrodynamics 
(e.g., wave equations for A, B, E, φ; charge conservation on long 
time scales). Other predictions are a departure from classical 
theory. One change involves non-local source terms for current 
density, J → J–∇ξ/µ, and charge density, ρ → ρ + ε∂ξ/∂t, which 
appear in the force and energy balance equations. Another 
difference is non-conservation of charge on short time scales. 
Experimental tests of these predictions are needed (Okun, 1989; 
Belli et al., 1999) and are a subject of future work.
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Table 1 Summary of predictions

Classical prediction New theory Testable by measurement of …
2( , ) ( , ) d

t

s
r t r s c A tf f= − ∇ •∫ A and φ as independent quantities Correlation between A and φ

ε2En2 – ε1En1 = ρA –ε2(∇φ)n2 + ε1(∇φ)n1  = ρA ε1(∂A/∂t)n1 – ε2(∂A/∂t)n2 ≠ 0?
Wave equations for A, B, E, φ Wave equations for A, B, E, φ Waves
ξ = 0 εµ ∂

2ξ/∂t2 – ∇2ξ = –µ[∂ρ/∂t + ∇ • J] ξ-wave: energy/no momentum
Evanescent EZ-wave Free space EZ-wave EZ-wave: energy + momentum
Charge conservation Charge conservation at long-time scale short-time charge conservation
F = ρE + J × B F = (ρ + ε∂ξ/∂t)E + (J – ∇ξ/µ) × B εE ∂ξ/∂t and ∇ξ × B/µ
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